

ANR Prise 3D

Thesis : Noise detection in stereoscopic synthesis images using machine learning

Jérôme BUISINE

LISIC - Imap

- 1. Noise in synthesis images
- 2. Image quality
- 3. Database
- 4. Current works
- 5. Conclusion

Noise in synthesis images

(a) After 50 samples

(b) After 300 samples (c) After 1200 samples

Figure 1: Preview of the images obtained by the Maxwell rendering engine of the Cuisine01 (D) scene at different generation times

Sub image overview

(a) After 50 samples

(b) After 300 samples

(c) After 1200 samples

Figure 2: Preview of the sub images obtained by the Maxwell render engine of the Cuisine01 (D) scene at different generation times

Noise overview

As we can see after 50 minutes of generation, a perceptual noise is generated due to the Monte-Carlo (stochastic) process.

• How to detect this perceptual noise ?

• How to detect this perceptual noise ?

• How to **quantify** it ?

Image quality

• Full reference (FR) metrics

- Full reference (FR) metrics
- Reduced reference (RR) metrics

- Full reference (FR) metrics
- Reduced reference (RR) metrics
- No-reference (NR) metrics

- Full reference (FR) metrics
- Reduced reference (RR) metrics
- No reference (NR) metrics

Image quality metrics

- Full reference :
 - Peak Signal to Noise Ratio (PSNR)
 - Structural Similarity Index Metrix (SSIM) [Wang et al., 2004]
 - Multi-Scale SSIM (MS-SSIM) [Wang et al., 2003]
 - ...
- No-reference :
 - Blind Image Quality Index (BIQI) [Moorthy and Bovik, 2010]
 - Blind Referenceless Image Spatial Quality Evaluator (BRISQUE) [Mittal et al., 2012]
 - Perception-based Image QUality Evaluator (PIQUE) [N. et al., 2015]

• ...

Database of natural images are available with distortions applied on these images.

A subjective score is then associated to these images.

- TID2008
- LIVE
- CSIQ
- ...

Database of natural images are available with distortions applied on these images.

A subjective score is then associated to these images.

- TID2008
- LIVE
- CSIQ
- ...

Model objective

Correlate as well as possible with the subjective scores.

Database of natural images are available with distortions applied on these images.

A subjective score is then associated to these images.

- TID2008
- LIVE
- CSIQ
- ...

Synthesis images database

Currently in the literature, there is no database that identifies the noise present into synthesis images.

Database

ID	Scene	Indices (samples)	Step	Images
A	Appart02	20 ightarrow 900	10	89
D	Cuisine01	20 ightarrow 1200	10	119
G	SdbCentre	$20 \to 950$	10	94
н	SdbDroite	$20 \to 950$	10	94

Table 1: Reduced database information

Database explanations

Database explanations

16 zones of size 200 x 200

Database explanations

16 zones of size 200 x 200

zone i with 1 sample

Information

The final threshold for a zone is the **mean** of all subjective thresholds obtained.

How sub-images are classified ?

How sub-images are classified ?

Label attribution

For each zone, a **label** value (0 or 1) is associated to the sub-image obtained at n samples during the generation.

Current works

What we need ?

• What kind of data model wants in order to classify as well as possible sub-images

What we need ?

- What kind of data model wants in order to classify as well as possible sub-images
- The whole sub-image or reduced information ?

What we need ?

- What kind of data model wants in order to classify as well as possible sub-images
- The whole sub-image or reduced information ?
- What kind of data well described the perceived noise in image ?

Expected model interactions

Reduction of canals

3 chanels

Reduction of canals

- Using L (luminance) canal from L*a*b transformation.
- Using the Mean Substracted Contrast Normalized (MSCN, see Eq. 3) matrix.

Hypothesis

Low bits values from images perhaps keep information about noise

Hypothesis

Low bits values from images perhaps keep information about noise

Hypothesis

Low bits values from images perhaps keep information about noise

low_bits_3

Hypothesis

Low bits values from images perhaps keep information about noise

low_bits_3

low_bits_4_shifted_2

Hypothesis

Low bits values from images perhaps keep information about noise

low_bits_3

low_bits_4_shifted_2

 $F = \{lab, mscn, low_bits_4_shifted_2\} + [low_bits_i]$

with $i \in [2, 6]$ and |F| = 8

Dimension reduction using SVD

Dimension reduction using SVD

Dimension reduction using SVD

Why the use of SV vector ?

Figure 3: Singular values vector obtained from images of Appart02 (A) scene with $\boldsymbol{\mathsf{L}}$ chanel

Another reduction

Another reduction

- Positions set, P with |P| = 5
- Potential sub-vectors size,

N = [4, 8, 16, 26, 32, 40]

Other parameters : normalization

Other parameters : normalization

K = [svd, svdn, svdne]

where

- svd : no normalization
- svdn : sub-vector is normalized itself
- svdne : sub-vector is normalized depending the **min** and **max** sub-vectors interval values from the whole dataset

Other parameters : training data

Zones are selected randomly with

$$Z = [4, 6, 8, 10, 12]$$

Final features as model input

Row in dataset

We define 3 model architectures to fit as well as possible final features :

- M1 : Support Vector Machine
- M2 : Ensemble_model (3 sub-models)
- M3 : Ensemble_model_v2 (5 sub-models)

Ensemble models configurations

These ensemble models are in fact **voting classifier** with principle of fair voting and regulated on *soft*.

Finally using all these parameters, we have a lot of combinations :

$$r = 3 \times |F| \times |P| \times |N| \times |K| \times |Z|$$
$$= 3 \times 8 \times 5 \times 6 \times 3 \times 5$$
$$= 10800$$

Train data

Train data

Test data

Build of specific dataset

The Area Under The Curve Receiver Operating Characteristics score is used to compare these models based on **test** dataset.

The Area Under The Curve Receiver Operating Characteristics score is used to compare these models based on **test** dataset.

AUC - **ROC** score is a performance measurement for classification problem. It tells how much model is capable of distinguishing between classes.

Model	feature	size	interval	zones	ROC Train	ROC Val	ROC Test
M3	lab (svd)	40	[80, 120[12	0.9418	0.9023	0.9219
M2	lab (svd)	32	[84, 116[4	0.9158	0.8724	0.9153
M2	lab (svd)	40	[80, 120[12	0.9629	0.9049	0.9145
M2	lab (svdne)	26	[87, 113[6	0.9337	0.8763	0.9089
M3	low_bits_2 (svd)	40	[0, 40[12	0.9567	0.8417	0.9081

Table 2: The 5 best models found based on AUC ROC score

Simulation from best model

Figure 4: Simulation of each zone obtained on scene Appart02 (A)

Simulation from best model

Figure 5: Simulation of each zone obtained on scene SdbDroite (H)

- Statistics approach, use of statistics from sub-block
 - Mean, Median, Percentile at 25%, Percentile at 75%, Variance, Area under curvex

- Statistics approach, use of statistics from sub-block
 - Mean, Median, Percentile at 25%, Percentile at 75%, Variance, Area under curvex
- Use of MSCN statistics

- Statistics approach, use of statistics from sub-block
 - Mean, Median, Percentile at 25%, Percentile at 75%, Variance, Area under curvex
- Use of MSCN statistics
- Use of correlation matrix from SV

- Statistics approach, use of statistics from sub-block
 - Mean, Median, Percentile at 25%, Percentile at 75%, Variance, Area under curvex
- Use of MSCN statistics
- Use of correlation matrix from SV
- Use of correlation between SV and labels

Other approaches

Features

- Statistics approach, use of statistics from sub-block
 - Mean, Median, Percentile at 25%, Percentile at 75%, Variance, Area under curvex
- Use of MSCN statistics
- Use of correlation matrix from SV
- Use of correlation between SV and labels

Model

• Use of Deep Learning approach as model

- Statistics approach, use of statistics from sub-block
 - Mean, Median, Percentile at 25%, Percentile at 75%, Variance, Area under curvex
- Use of MSCN statistics
- Use of correlation matrix from SV
- Use of correlation between SV and labels

Model

• Use of Deep Learning approach as model

Remark

All of these approaches seems to give same results as before.. Hence, **overfitting** or bad approximation.

Conclusion

Difficult to have a model which generalizes for each scene but why ?

Difficult to have a model which generalizes for each scene but why ?

- Scene seems to have each own components to describe the noise
- Difficult to find the best components from data

Difficult to have a model which generalizes for each scene but why ?

- Scene seems to have each own components to describe the noise
- Difficult to find the best components from data

Solution :

- Find a way to choose components depending of the scene ?
- Use of work of André and Rémi : SV entropy

Noise detection

- Study of Singular Values behaviors from few noises
- Use of Generative Adversarial Network model
- Use of Transfer learning (Alexnet, Resnet, ...)
- Work with University of Lille 3
- Tackle the **stereoscopic** aspect

Noise detection

- Study of Singular Values behaviors from few noises
- Use of Generative Adversarial Network model
- Use of Transfer learning (Alexnet, Resnet, ...)
- Work with University of Lille 3
- Tackle the **stereoscopic** aspect

Denoising

- Use of Deep Learning approaches (autoencoder and others...) to denoise images
- Create custom denoiser for synthesis images

Developments are centralized into the *IPFML* python package (https://github.com/jbuisine/IPFML).

Questions?

References i

- Mittal, A., Moorthy, A. K., and Bovik, A. C. (2012).
 No-reference image quality assessment in the spatial domain. *IEEE Trans. Image Processing*, 21(12):4695–4708.
- Moorthy, A. K. and Bovik, A. C. (2010).

A two-step framework for constructing blind image quality indices.

IEEE Signal Process. Lett., 17(5):513–516.

N., V., D., P., Bh., M. C., Channappayya, S. S., and Medasani, S. S. (2015).

Blind image quality evaluation using perception based features.

In Twenty First National Conference on Communications, NCC 2015, Mumbai, India, February 27 - March 1, 2015, pages 1–6.

Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P. (2004).
 Image quality assessment: from error visibility to structural similarity.

IEEE Trans. Image Processing, 13(4):600–612.

Wang, Z., Simoncelli, E. P., and Bovik, A. C. (2003).
 Multiscale structural similarity for image quality assessment.
 In The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, volume 2, pages 1398–1402. leee.

$$PSNR = 10 \times \log_{10} \left(\frac{d^2}{MSE} \right) \tag{1}$$

where *d* is the signal dynamics (the maximum possible value for a pixel). In the standard case of an image where the components of a pixel are encoded on 8 bits, d = 255 and *MSE* (see Eq. 2) is the mean square error between the 2 images.

$$MSE = \frac{1}{mn} \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} (I_o(i,j) - I_r(i,j))^2$$
(2)

where $\mathit{I_o}$ is the distorted image and $\mathit{I_r}$ the reference image, both of size $\mathit{m} \times \mathit{n}$

To calculate the MSCN matrix, we must first convert our RGB image to a grayscale image. The MSCN will extract Natural Structure Scene (NSS) information from this grayscale image. An operation is applied to the luminance image I(i, j) to produce :

$$\hat{I}(i,j) = \frac{I(i,j) - \mu(i,j)}{\sigma(i,j) + C}$$
(3)

where $i \in \{1, 2..., M, j \in \{1, 2..., N\}$ are spatial indices, M, N are respectively the height and width of the image, C is constant, which is set to 1 to avoid instability

Backup slides (MSCN)

and where,

$$\mu(i,j) = \sum_{k=-K}^{K} \sum_{l=-L}^{L} w_{k,l} I_{k,l}(i,j)$$
(4)

$$\sigma(i,j) = \sqrt{\sum_{k=-K}^{K} \sum_{l=-L}^{L} w_{k,l} (I_{k,l}(i,j) - \mu(i,j))^2}$$
(5)

In (4) and (5) $w = \{w_{k,l} | k = -K, ..., K, l = -L, ..., L\}$ is a circularly symmetrical 2D Gaussian weighting function sampled at 3 standard deviations (K = L = 3) and recalculated at unit volume. Then, the transformed luminance values of (3) are called Mean Subtracted Constrast Normalized (MSCN) coefficients.

We define 3 models architecture to fit as well as possible final features :

• **Support Vector Machine** (with RBF kernel and cross validation process)

We define 3 models architecture to fit as well as possible final features :

- Support Vector Machine (with RBF kernel and cross validation process)
- Ensemble_model, composed of :
 - SVM with same configuration as previous model
 - Random Forest with 100 estimators
 - Logistic Regression with *liblinear* kernel

We define 3 models architecture to fit as well as possible final features :

- Support Vector Machine (with RBF kernel and cross validation process)
- Ensemble_model, composed of :
 - SVM with same configuration as previous model
 - Random Forest with 100 estimators
 - Logistic Regression with *liblinear* kernel
- Ensemble_model_v2, composed of :
 - SVM with same configuration as previous model
 - Random Forest with 100 estimators
 - Logistic Regression with *liblinear* kernel
 - KNeighbors Classifier
 - Gradient Boosting Classifier with 100 estimators and learn step set to 1.0.