

LISIC - Webinar

Toward a noise perception model for photorealistic image synthesis

Jérôme Buisine (PhD Student) Supervisors: Christophe Renaud and Samuel Delepoulle Team: IMAP (Images et Apprentissage) December, 10 2020

*ANR support : project ANR-17-CE38-0009 Univ. Littoral Côte d'Opale, LISIC, F-62100 Calais, France

Context	Dataset	Noise detection	Conclusion
000	000000000	000000000000000000000000000000000000000	0000000
A			
Agenda			

- 1. Context
- 2. Dataset
- 3. Noise detection
- 4. Conclusion

Noise detection

Conclusion 00000000

Context

$$L_o(x,\omega_o) = L_e(x,\omega_o) + \int_{\Omega} L_i(x,\omega_i) \cdot f_r(x,\omega_i \to \omega_o) \cdot \cos\theta_i d\omega_i$$
(1)

Photorealistic image synthesis

- Global illumination rendering
- Monte Carlo

Dataset 0000000000 Noise detection

Conclusion 00000000

Context: noise in photorealistic image

(a) After 1 sample

(b) After 20 samples

(c) After 10, 000 samples

Dataset 0000000000 Noise detection

Conclusion 00000000

Context: noise in photorealistic image

(a) After 1 sample

(b) After 20 samples

(c) After 10, 000 samples

Question:

How can human perceive this MC noise ?

Context	Dataset	Noise detection	Conclusion
000	000000000	0000000000000000	00000000

Dataset creation: need of human data

Problem of photorealistic image synthesis rendering

- No-reference context during rendering
- Unavailable models for noise perception in MC generated images
- No human perceptual reference data

Context	Dataset	Noise detection	Conclusion
000	00000000	000000000000000000000000000000000000000	000000

Dataset creation: need of human data

Problem of photorealistic image synthesis rendering

- No-reference context during rendering
- Unavailable models for noise perception in MC generated images
- No human perceptual reference data

A solution

Collect human subjective perceptual threshold during rendering as ground truth

Context	Dataset	Noise detection	Conclusion
000	000000000	000000000000000000000000000000000000000	000000

Dataset creation: need of human data

Problem of photorealistic image synthesis rendering

- No-reference context during rendering
- Unavailable models for noise perception in MC generated images
- No human perceptual reference data

A solution

Collect human subjective perceptual threshold during rendering as ground truth

Build a model

Use these perceptual thresholds into a perceptual noise model

С	ontext
0	000

Noise detection

Conclusion 00000000

Perception: definition

Just-Noticeable Difference (JND)

Noise can be viewed as a perceptible difference into image

20 samples

1000 samples

С	ontext
0	000

Noise detection

Conclusion 00000000

Perception: definition

Just-Noticeable Difference (JND)

Noise can be viewed as a perceptible difference into image

20 samples

1000 samples

 Noise detection

Conclusion 00000000

Dataset creation: collect human subjective threshold

Our way of getting perceptual subjective thresholds

16 zones of size 200 x 200

Conclusion 00000000

Dataset creation: collect human subjective threshold

 Dataset
 Noise detect

 000
 000000000
 00000000

Noise detection

Conclusion 00000000

Dataset creation: collect human subjective threshold

Noise detection

Conclusion 00000000

Dataset creation: collect human subjective threshold

 Dataset
 Noise det

 00
 00000000
 00000

Noise detection

Conclusion 00000000

Dataset creation: collect human subjective threshold

Noise detection

Conclusion 00000000

Dataset creation: collect human subjective threshold

20 samples

3000 samples (reference)

 Dataset
 Noise d

 00
 00000000
 0000

Noise detection

Conclusion 00000000

Dataset creation: collect human subjective threshold

220 samples

3000 samples (reference)

Noise detection

Conclusion 00000000

Dataset creation: collect human subjective threshold

500 samples

3000 samples (reference)

 Dataset
 Noise d

 00
 000000000
 00000

Noise detection

Conclusion 00000000

Dataset creation: collect human subjective threshold

900 samples

3000 samples (reference)

 Dataset
 Noise de

 00
 000000000
 00000

Noise detection

Conclusion 00000000

Dataset creation: collect human subjective threshold

1400 samples

3000 samples (reference)

 Dataset
 Noise detection

 00
 000000000
 000000000

detection 0000000000000000 Conclusion 00000000

Dataset creation: collect human subjective threshold

1400 samples

3000 samples (reference)

Conclusion 00000000

Dataset creation: collect human subjective threshold

Context	
000	

Noise detection

Conclusion 00000000

Dataset creation: overview

313	312	274	271
310	301	308	235
248	292	222	240
211	151	139	177

(a) Human thresholds (Mean Opinion Score)

(b) Human reference

(c) After 900 samples

Context	
000	

Noise detection

Conclusion 00000000

Dataset creation: overview

313	312	274	271
310	301	308	235
248	292	222	240
211	151	139	177

(c) After 900 samples

Context	
000	

Noise detection

Conclusion 00000000

Dataset creation: overview

313	312	274	271
310	301	308	235
248	292	222	240
211	151	139	177

(a) Human thresholds (Mean Opinion Score)

(b) Human reference SSIM: 0.70 (< 0.95) (c) After 900 samples SSIM: 1

Structural Similarity Index (SSIM)

SSIM metric quantifies the visibility of errors between a distorted image and a reference image using a variety of known properties of the human visual system.

Context	Dataset	Noise detection	Conclusion			
000	000000000	000000000000000000000000000000000000000	0000000			
Build of new dataset						
Duna or nev	v uutuset					

Previous dataset

- 9 viewpoints from scenes
- different renderers (maxwell, igloo, cycle...)
- hence, different algorithms

Context	Dataset	Noise detection	Conclusion
000	000000000	000000000000000000000000000000000000000	0000000
Duild of no	datasat		
Dulla of nev	N Galasel		

Previous dataset

- 9 viewpoints from scenes
- different renderers (maxwell, igloo, cycle...)
- hence, different algorithms

New dataset

- 40 viewpoints with 10,000 images of 1 sample (HD images)
- only pbrt-v3 renderer
- use of path-tracing
- available soon

Context	Dataset	Noise detection	Conclusion
000	0000000000	00000000000000000	0000000
Build of new da	taset		

Why saving image of 1 sample ?

• generate $\binom{10000}{k}$ images of k samples from pool of 10,000 samples

Build of new	dataset		
000	00000000000	000000000000000000000000000000000000000	0000000
Context	Dataset	Noise detection	Conclusion

Why saving image of 1 sample ?

• generate $\binom{10000}{k}$ images of k samples from pool of 10,000 samples $\Rightarrow \binom{10000}{20} \approx 4.3e61$

000	0000000000	000000000000000000	0000000
Context	Dataset	Noise detection	Conclusion

Why saving image of 1 sample ?

- generate $\binom{10000}{k}$ images of k samples from pool of 10,000 samples $\Rightarrow \binom{10000}{20} \approx 4.3e61$
- posterior study of samples distribution

Context	Dataset	Noise detection	Conclusion
000	0000000000	0000000000000000	00000000

Build of new dataset

Why saving image of 1 sample ?

- generate $\binom{10000}{k}$ images of k samples from pool of 10,000 samples $\Rightarrow \binom{10000}{20} \approx 4.3e61$
- posterior study of samples distribution
- use of deep learning approach (RNN, GAN, Autoencoder...)

Context	
000	

Noise detection

Conclusion 00000000

Build of new dataset

Figure 5: SIN3D web application

Context 000	Dataset 000000000	Noise detection	Conclusion 0000000
Exp	ected model		
	Binary classification		
	• Model which labels in	nage as noisy or not (converged or not)	
	• Supervised learning		

Context 000	Dataset 0000000€0	Noise detection	Conclusion 0000000
Exp	ected model		
	Binary classification		
	• Model which labels image as n	oisy or not (converged or not)	
	• Supervised learning		
	Common pipeline used		
	3 chanels 200 x 200	ction Machine Learning →	label

Dataset 000000000 Noise detection

Conclusion 00000000

Why this kind of model ?

Dataset 000000000 Noise detection

Conclusion 00000000

Why this kind of model ?

• stopping criterion during rendering based on sub-blocks of rendered image

Dataset 000000000 Noise detection

Conclusion 00000000

Why this kind of model ?

- stopping criterion during rendering based on sub-blocks of rendered image
- save computation time

Dataset 000000000 Noise detection

Conclusion 00000000

Why this kind of model ?

- stopping criterion during rendering based on sub-blocks of rendered image
- save computation time
- target more complex parts of the scene

Noise detection

Context
000

Noise detection

Conclusion 00000000

SVD attributes

ontext	Dataset	Noise detection	Conclusion
000	000000000	0000000000000000	00000000

SVD attributes

Singular Value Decomposition

where:

- M is an $m \times n$ real or complex matrix
- U is an $m \times m$ real or complex unitary matrix.
- Σ is an $m \times n$ rectangular diagonal matrix with non-negative real numbers on the diagonal.
- V is an $n \times n$ real or complex unitary matrix.

LISIC ANR

Context 000	Dataset 0000000000	Noise detection ○●○○○○○○○○○○○○○○	Conclusion 00000000
SVD attributes			
scene image	Split in zones	$\begin{array}{cccc} KGB & L \mbox{ channel from } L^{1} \pi^{1} \beta^{1} & & SVD \\ \hline & & & & & & & & & \\ \hline & & & & & & &$	

Singular Value decomposition

where:

- M is an $m \times n$ real or complex matrix
- U is an $m \times m$ real or complex unitary matrix.
- Σ is an $m \times n$ rectangular diagonal matrix with non-negative real numbers on the diagonal.
- V is an $n \times n$ real or complex unitary matrix.

LISIC ANR

SVD attributes

Possibility to decompose image using SVD into structure dependent and non-dependent images (Wang et al. 2013).

31011
0000

Shannon entropy of singular values can be defined as SVD-Entropy (O.Alter, P.O.Brown, and D.Bolstein 2000):

$$H_{SVD} = -\frac{1}{\log(O)} \sum_{i=1}^{O} \overline{\sigma}_i \log(\overline{\sigma}_i)$$
⁽²⁾

where :

$$\overline{\sigma}_i = \sigma_i^2 / \sum_{p=1}^O \sigma_p^2 \tag{3}$$

Context	Dataset	Noise detection	Conclusion
000	000000000	0000000000000000	00000000

SVD-Entropy

Figure 7: H_{SVD} evolution during over Kitchen image.

Context	
000	

Noise detection

Conclusion 00000000

SVD-Entropy

Context	
000	

Noise detection

Conclusion 00000000

SVD-Entropy and RNN

Figure 9: Recurrent neural network with different samples images level as input

С	ontext
0	000

Noise detection

Conclusion 00000000

SVD-Entropy and RNN

Figure 10: Recurrent neural network with different samples images level as input

Context	Dataset	Noise detection	Conclusion
000	000000000	00000000000000000	00000000
SVD-Entropy and	d RNN		

Parameters studied:

- The size of the sequence of RNN with $k \in [3, 4, ..., 10]$;
- $m \in [4, 25, 100, 400]$ (number of sub-blocks cut out within the block). Sub-blocks are respectively of size 100×100 , 40×40 , 20×20 and 10×10 ;
- Batch size: $b_s \in [64, 128]$;
- Samples sequence step: $n \in [20, 40, 80]$;
- Input normalization: bnorm or snorm ;
- The value extracted from a sub-block $F \in [H_{SVD}, H_{SVD}^1, H_{SVD}^2]$.

where:

$$H_{SVD}^{1} = -\frac{1}{\log(\frac{O}{4})} \sum_{i=0}^{O/4} \overline{\sigma}_{i} \log_{2} \overline{\sigma}_{i} \qquad H_{SVD}^{2} = -\frac{1}{\log(O - \frac{O}{4})} \sum_{i=O/4}^{O} \overline{\sigma}_{i} \log_{2} \overline{\sigma}_{i}$$

Context	Dataset
000	000000000

Noise detection

Conclusion 00000000

SVD-Entropy and RNN

Figure 11: Pipeline for SVD-Entropy and RNN

Context	Dataset	Noise detection	Conclusion				
000	000000000	000000000000000000	0000000				
SVD-Entropy and RNN							

Fixed parameters:

- RNN: LSTM (512) / LSTM (128) / LSTM (32) / Sigmoid (1) ;
- Dropout for each LSTM layers set to 40%;
- Recurrent activation function: *Hard Sigmoid* (input, forget, and output gates);
- Activation function: Sigmoid (hidden state and output hidden state);
- Balanced samples weights when propagating binary crossentropy loss.

Dataset specifications

Around 300.000 samples (depending of k) obtained from the 40 viewpoints. 12 blocks used as train data set, the 4 others as testing data set part. Same dataset (train / test) is used for each run (parameters combination).

Context	Dataset	Noise detection	Conclusion
000	000000000	00000000000000000	0000000
SVD-Entro	py and RNN		
C	•••••		

Comparisons metrics:

- Accuracy: fraction of predictions model got right;
- AUC ROC: Area Under Curve of receiver operating characteristic curve.

Figure 12: AUC ROC for regression logistic model

C	ontext
0	00

Noise detection

Conclusion 00000000

SVD-Entropy and RNN

k	m	F	bs	bnorm	snorm	n step	Acc Train	Acc Test	AUC Train	AUC Test
8	100	H _{SVD}	128	0	1	40	84.58 %	82.74 %	84.44 %	82.55 %
5	100	H _{SVD}	128	0	1	80	83.78 %	82.87 %	83.32 %	82.47 %
6	100	H _{SVD}	64	0	1	40	84.18 %	82.61 %	84.01 %	82.45 %
7	100	H _{SVD}	64	0	1	40	84.62 %	82.79 %	84.24 %	82.44 %
7	100	H _{SVD}	128	0	1	40	84.65 %	82.75 %	84.36 %	82.42 %
7	100	H _{SVD}	64	0	1	80	83.67 %	82.36 %	83.70 %	82.38 %
5	100	H _{SVD}	64	0	1	80	83.61 %	82.17 %	83.85 %	82.27 %
9	100	H _{SVD}	64	0	1	40	83.46 %	81.99 %	83.84 %	82.21 %
10	100	H _{SVD}	128	0	1	40	84.52 %	82.58 %	84.20 %	82.16 %

Table 1: 10 best parameters combinations results for RNN model

Prediction fluctuation

To overcome this problem and to make thresholds prediction more robust, it was proposed to consider that a block is no longer noisy after **3 successive noiseless** predictions.

Dataset 0000000000 Noise detection

Conclusion 00000000

SVD-Entropy and RNN

(b) Still noisy block 10 with 500 samples

(c) Reference block 10 with 10, 000 samples

Critical prediction

The block targeted here from the bathroom point of view is still noisy up to 10,000 samples and seems to contain a significant light reflection.

Noise detection Conclusion

SVD-Entropy and RNN

SSIM: 0.9840 SSIM: 0.9775

SSIM : 1.0

SSIM : 0.9776 SSIM : 0.9780 SSIM : 1.0

SSIM: 0.9880 SSIM: 0.9604

SSIM : 1.0

Human

Reference

RNN - HSVD

Human

SSIM: 0.9878 SSIM: 0.9650

Reference

Dataset 0000000000 Noise detection

Conclusion 00000000

SVD-Entropy and RNN

Dataset 0000000000 Noise detection

Conclusion 00000000

SVD-Entropy and RNN

San miguel

10000	8220	6540	10000
9460	8500	8420	10000
6620	8540	10000	10000
9380	6620	10000	9620

Staircase 2	3180	2820	4860	7300				
	3180	3820	5900	9460		-		
	5620	3660	2260	2820				
	2500	2220	1780	2020				
Point of view	Predicted thresholds			olds	H _{SVD} RNN prediction	10,000 samples		

Conclusion

Conclusion

- Generic method to establish a perceptual stopping criterion
- Some critical cases (lack of data for better generalisation ?)
- Data are available in https://prise3d.univ-littoral.fr

Conclusion

Future works:

- MDPI Entropy journal : SVD-Entropy and RNN (submitted) ;
- Use of HDR images for same experiment and make comparisons ;
- Application of *Median Of meaNs* in rendering. Conference or graphics-oriented journal (in progress) ;
- Features selection optimisation : Conference or journal oriented in machine learning / optimisation ;
- Image database : human thresholds, images generated with 1 sample (RAWLS) and images in PNG formats.

Context	Dataset	Noise detection	Conclusion
000	000000000	00000000000000000	0000000
~			
Conclusion			

In continuity :

- Improve deep learning works (GAN for denoising) ;
- Create new base with 3D images (stereoscopic).

Dataset 0000000000 Noise detection

Conclusion 00000000

Thanks for your attention!

Context	Dataset	Noise detection	Conclusion
000	000000000	0000000000000000	0000000

Backup: use of singular values

34

Context 000	Dataset 000000000	Noise detection	Conclusion 000000●0
Backup:	LSTM cells		
	6	h	6
			<u>ج</u> ال
6			
(Xt+1	

Dataset 0000000000 Noise detection

Conclusion 00000000

Backup: distribution analysis

(a) Variance

(d) Kurtosis

(c) Skewness

