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Context



Context

Photorealistic image synthesis

• Global illumination rendering

• Monte Carlo
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Context: noise in photorealistic image

(a) After 1 sample (b) After 20 samples (c) After 10000 samples

3



Context: ways to tackle the noise problem in rendering

How to improve the rendered image ?

• by improving the path-tracing strategies

1. Integrator: Bidirectional path-tracing (Lafortune and Willems 1993),

Metropolis light transport (Veach and Guibas 1997)

2. Path-guiding: adaptive variance reduction (Vorba et al. 2019)

• by providing adaptive sampling

• by filtering as a post-process

• using hybrid methods based on the 2 last approaches (progressive

rendering)

How can humans perceived the photorealistic rendering generated noise ?
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Noise: overview

• Capture → a lot of noise perception models

• Full-reference: SSIM (Carnec, Le Callet, and Barba 2003)

• No-reference: BRISQUE (Mittal, Moorthy, and Bovik 2012)

• ...
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Noise: overview

• Capture → a lot of noise perception models

• Full-reference: SSIM (Carnec, Le Callet, and Barba 2003)

• No-reference: BRISQUE (Mittal, Moorthy, and Bovik 2012)

• ...

Problem

Noise perception capture models cannot be used for photorealistic image

synthesis

• Rendering → a lack of noise perception models

Objective

Build a noise perception model for computer graphics
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Perception



Perception: definition

Just-Noticeable Difference (JND)

Noise can be viewed as a perceptible difference into image
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Noise can be viewed as a perceptible difference into image

6



Perception: Visual Difference Predictor

HDR-VDP: a calibrated method for objective quality prediction (Narwaria et al. 2015)
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Perception: Visual Difference Predictor

HDR-VDP: a calibrated method for objective quality prediction (Narwaria et al. 2015)

Problem

• complex model, with a lot of parameters (room luminance, screen luminance...).

• model which requires reference which is not available in computer graphics.
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Relative & current works



Relative & current works

1. How to build a such model ?

2. Previous & current team works

3. Deep Learning approaches
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Dataset creation: need of human data

Problem of photorealistic image synthesis rendering

• No-reference context during rendering

• No human perceptual reference data

A solution

Collect human subjective perceptual threshold during rendering as ground

truth

Build a model

Use these perceptual thresholds into a perceptual noise model
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Dataset creation: collect human subjective threshold

Our way of getting perceptual subjective thresholds
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Dataset creation: overview

(a) Human thresholds (Mean

Opinion Score)

(b) Human reference (c) After 900 samples
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Dataset creation: overview

(a) Human thresholds (Mean

Opinion Score)

(b) Human reference

SSIM: 0.70 (< 0.95)

(c) After 900 samples

SSIM: 1

Structural Similarity Index (SSIM)

SSIM metric quantifies the visibility of errors between a distorted image and a

reference image using a variety of known properties of the human visual system.
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Database creation: expected model

Binary classification

• Model which labels image as noisy or not (converged or not)

• Supervised learning

Common pipeline used
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Why this kind of model ?

• stopping criterion during rendering based on sub-blocks of rendered image

• save computation time

• target more complex parts of the scene
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Relative & previous works

1. How to build a such model ?

2. Previous & current team works

3. Deep Learning approaches
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Team works: previously

Perception model for synthesis images:

• Image noise detection in global illumination methods based on FRVM (J. Constantin,

A. Bigand, et al. 2015)

• Perception of noise in global illumination based on inductive learning (J. Constantin,

I. Constantin, et al. 2016)

• Perception of noise and global illumination: Toward an automatic stopping criterion based

on SVM (N. Takouachet et al. 2017)

Support Vector Machine (SVM):

(a) Linear classifier model (b) SVM classifier model
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Team works: previously

Perception of noise in global illumination based on inductive learning (J. Constantin, I. Constantin,

et al. 2016)
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Team works: previously

Perception of noise and global illumination: Toward an automatic stopping criterion based on SVM

(N. Takouachet et al. 2017)
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Team works: previously

Model features zones Accuracy Train Accuracy Test AUC ROC Train AUC ROC Test

SVM (J. Constantin 2015) 12 0.9592 0.8756 0.9677 0.8755

Training parameters

• Use of 4 viewpoints from 3 scenes (same renderer)

• 12 zones used from training / 4 for testing

• ROC is a probability curve and AUC represents

degree or measure of separability

• TPR = TP
TP+FN

• FPR = FP
TN+FP
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Team works: previously
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Team works: use of singular values
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Team works: use of singular values

Singular Value Decomposition

where:

• M is an m × n real or complex matrix

• U is an m × m real or complex unitary matrix.

• Σ is an m × n rectangular diagonal matrix with non-negative real numbers on the diagonal.

• V is an n × n real or complex unitary matrix.
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Team works: use of singular values

Possibility to decompose image using SVD into structure dependent and

non-dependent images (Wang et al. 2013).

(a) L chanel (500 samples) (b) SVD reconstruction (0, 50) (c) SVD reconstruction (50, 200)

23



Team works: Recurrent Neural Networks

Input and parameters

• Σ singular values from SVD

• Window size of 5
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Team works: Recurrent Neural Networks

Model features zones Accuracy Train Accuracy Test AUC ROC Train AUC ROC Test

SVM (J. Constantin 2015) 12 0.9592 0.8756 0.9677 0.8755

RNN Singular values [0, 200[ 12 0.9404 0.8966 0.9249 0.8859

Training parameters

• Use of 4 viewpoints from 3 scenes (same renderer)

• 12 zones used from training / 4 for testing

• ROC is a probability curve and AUC represents

degree or measure of separability

• TPR = TP
TP+FN

• FPR = FP
TN+FP
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Team works: Recurrent Neural Networks
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Team works: conclusion

Encountered problems:

• difficulty to generalize using dataset

• scene structure gives strong influence for model performance

• need more data to fit well
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Relative & current works

1. How to build a such model ?

2. Previous & current team works

3. Deep Learning approaches
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DL approaches: build of new dataset

Previous dataset

• 9 viewpoints from scenes

• different renderers (maxwell, igloo, cycle...)

• hence, different algorithms

New dataset

• 40 viewpoints with 10000 images of 1 sample

• only pbrt-v3 renderer

• use of path-tracing

• available soon

29



DL approaches: build of new dataset

Previous dataset

• 9 viewpoints from scenes

• different renderers (maxwell, igloo, cycle...)

• hence, different algorithms

New dataset

• 40 viewpoints with 10000 images of 1 sample

• only pbrt-v3 renderer

• use of path-tracing

• available soon

29



DL approach: build of new dataset

Why saving image of 1 sample ?

• generate
(

10000
k

)
images of k samples from pool of 10000 samples

⇒
(

10000
20

)
≈ 4.3e61

• posterior study of samples distribution

• use of deep learning approach (RNN, GAN, Autoencoder...)
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Conclusion



Conclusion

Presented works:

• Singular values vector seems to fit well using RNN

• Lack of data and need of new dataset

• Enable posterior samples study using this new dataset
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Perspectives

Improve dataset:

• check convergence of all generated scenes

• use of web experiment (SIN3D) app to collect human thresholds
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Perspectives

Improve dataset:

• check convergence of all generated scenes

• use of web experiment (SIN3D) app to collect human thresholds

Use of Deep Learning:

• exploit new dataset with CNN / RNN

• using preprocessed images

• features based only

• samples distribution study

• denoising approaches
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Thanks for your attention

Resources:

• Scene files: https://gogs.univ-littoral.fr/Prise3D/p3d_pbrt-scenes.git
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Backup: SIN3D calibration

Figure 10: Calibration scene
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Backup: SIN3D overview

Figure 11: User interface
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Backup: use of singular values
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Backup: distribution analysis

(a) Variance (b) Standard deviation

(c) Skewness (d) Kurtosis
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Backup: RAWLS

New dataset:

• Use of new image format: RAWLS for RAW Light Simulation

Python package:

https://prise-3d.github.io/rawls
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